Verbund-Sicherheitsglas VSG

Anwendung

Diese Glasscheiben werden für den Objekt- und Personenschutz eingesetzt, beispielsweise an Schaltern von Kreditinstituten, Schaufenstern, zur Panzerung von Sonderschutzfahrzeugen oder auch zur Abdeckung und dem Schutz von Smartphone-Displays. Dabei sind unterschiedliche Anforderungen zu beachten: Für die Verwendung zum Personenschutz (z. B. Bankschalter) wird vorrangig darauf geachtet, dass das Glas bei Beschädigung zur zu schützenden Person hin nicht oder nur wenig splittert. Beim Objektschutz (z. B. Schaufenster) geht

es vorrangig darum, dass das Glas eine Vielzahl von möglichen Angriffen, Einbrüchen (Einschlagen) oder einem Aufprall oder Anschlag an einen anderen Gegenstand möglichst lange übersteht, ohne durch ein Loch den Durchgriff zu erlauben. Das Panzerglas kann dabei bersten, die Sicherheits-Laminierung aber hält die Panzerglas-Scheibe stabil. Zur genauen Beurteilung werden die verschiedenen Gläser in Widerstandsklassen eingeteilt.

Einteilung Widerstandsklassen

Durchwurf / Durchbruch

Zur Prüfung der Durchwurfhemmung nach DIN EN 356 A muss eine 110 cm × 90 cm große Scheibe dem dreimaligen (bei P5A: neunmaligen) Aufprall einer 4,11 kg schweren Stahlkugel mit 10 cm Durchmesser aus verschiedenen Höhen standhalten. Zur Prüfung der Durchbruchhemmung nach DIN EN 356 B wird ermittelt, wie viele Schläge einer maschinell mit 11 m/s geführten, 2 kg schweren Axt erforderlich sind, um in die ebenfalls 110 cm × 90 cm große Prüfscheibe eine 40 cm × 40 cm große Öffnung zu schlagen.

DIN EN 356	DIN 52290-3 DIN 52290-4	VdS	Eigenschaften
P1A	-	-	Durchwurfhemmung: 1,5 m Fallhöhe
P2A	A1	_	Durchwurfhemmung: 3 m Fallhöhe
P3A	A2	-	Durchwurfhemmung: 6 m Fallhöhe
P4A	A3	EH01	Durchwurfhemmung: 9 m Fallhöhe / Einbruchhemmung gegen körperliche Gewalt
P5A	_	EH02	Durchwurfhemmung: 9 m Fallhöhe (9-mal) / Einbruchhemmung gegen einfache Werkzeuge wie z.B. Schraubendreher, Zange und Keile
P6B	B1	EH1	Durchbruchhemmung: 30–50 Schläge / Einbruchhemmung gegen Nageleisen oder Verwendung eines zweiten Schraubendrehers
Р7В	B2	EH2	Durchbruchhemmung: 51–70 Schläge / Einbruchhemmung gegen z.B. Sägen, Hammer, Schlagaxt, Stemmeisen und Meißel, Akku-Bohrmaschine
P8B	В3	EH3	Durchbruchhemmung: über 70 Schläge / Einbruchhemmung gegen Elektrowerkzeuge wie z. B. Bohrmaschine, Stich- oder Säbelsäge und Winkelschleifer

Beschuss

Zur Prüfung der Durchschusshemmung nach DIN EN 1063 werden auf 3 je 500 mm × 500 mm große Scheiben je drei Schüsse abgegeben, wobei die Auftreffpunkte ein Dreieck von 120 mm Kantenlänge im Zentrum der Scheibe bilden. Die Widerstandsklasse bestimmt sich nach der verwendeten Geschossart und der Schussentfernung (5–10 m).

DIN EN 1063	DIN 52290-2	Eigenschaften
BR 1	C1	Durchschusshemmung Kurzwaffe Kaliber .22 lr
BR 2	C 1	Durchschusshemmung Kurzwaffe Kaliber 9 mm Parabellum
BR 3	C2	Durchschusshemmung Kurzwaffe Kaliber .357 Magnum
BR 4	C3	Durchschusshemmung Kurzwaffe Kaliber .44 Remington Magnum
BR 5	_	Durchschusshemmung Langwaffe (Büchse) Kaliber 5,56 × 45
BR 6	C4	Durchschusshemmung Langwaffe (Büchse) Kaliber 7,62 × 51 Weichkern
BR 7	_	Durchschusshemmung Langwaffe (Büchse) Kaliber 7,62 × 51 Hartkern
-	C5	Durchschusshemmung
SG 1	_	Durchschusshemmung Langwaffe (Flinte) Kaliber 12/70 (1 Schuss)
SG 2	_	Durchschusshemmung Langwaffe (Flinte) Kaliber 12/70 (3 Schuss)
_	B2/C2-SA	Durchschusshemmung

Sprengwirkung

Zur Prüfung der Sprengwirkungshemmung nach DIN EN 13541 wird über mindestens 20 ms ein senkrecht auf die 110 cm × 90 cm große Scheibe auftreffender Druckstoß erzeugt, der die Explosion von 100 bis 2500 kg TNT in einer Entfernung von 35 bis 50 m simuliert.

DIN EN 13541	DIN 52290-2	Eigenschaften
ER1	-	Sprengwirkungshemmend, Maximaldruck 50–100 kPa
ER2	D1	Sprengwirkungshemmend, Maximaldruck 100–150 kPa
ER3	D2	Sprengwirkungshemmend, Maximaldruck 150–200 kPa
ER4	D3	Sprengwirkungshemmend, Maximaldruck 200–350 kPa